Unexpected Giant Modification of the Polarization of Light Driven by Polarons

  • Authors

    Blai Casals,1 Rafael Cichelero,1 Pablo García Fernández,2 Javier Junquera,2 David Pesquera,1 Mariano Campoy-Quiles,1Ingrid C. Infante,1 Florencio Sánchez,1 Josep Fontcuberta,1 and Gervasi Herranz1
  • Publication

    Giant Optical Polarization Rotation Induced by Spin-Orbit Coupling in Polarons
    Physical Review Letters, 117 (2), 26401. 2016
  • Figure

    Modification of the polarization light by polarons

The response of some materials to light may change substantially in a magnetic field. A particular case is presented for magneto-optical (MO) materials, in which the polarization of light is changed proportionally to the magnetization. This property is useful for applications in data storage, sensing and optical waveguides. The root of this MO effect is usually the material’s own magnetism. Yet, researchers at ICMAB have found that a surprisingly large MO effect can arise from an apparently non-magnetic source, namely, polarons. These physical entities have a particle-like character and they form when electrons interact so strongly with the surrounding ions that they deform the crystalline lattice around them (see Figure). Indeed, this interaction may become so intense that the electrons can become self-trapped by the same distortion that they create in the solid.

The work led by the ICMAB group was focused on thin films of La2/3Ca1/3MnO3, a so-called manganite known for its “colossal” magnetoresistance [1]. Briefly, around the ferromagnetic transition –relatively close to room temperature– the electric transport in this material is remarkably sensitive to magnetic fields, so that very large changes of resistance are induced by them. It is widely accepted that the interaction of polarons with magnetic fields plays an important role in the emergence of the colossal magnetoresistance and, therefore, La2/3Ca1/3MnO3is a very suitable system for the study of polaronic optical responses.

Bearing this in mind, the polarization of a light beam was compared before and after it had reflected from the film [1]. The result was that, near the temperature where magnetoresistance is highest (265 K) and electrons self-trap forming polarons, a magnetic field induced a rotation of the beam’s polarization that was more than one order of magnitude higher than when electrons were free to move. The wavelength dependence of this rotation was measured as a function of the wavelength, and this analysis revealed features that were consistent with the excitation of polarons. According to the theoretical analysis, the magneto-optical response of polarons is particularly enhanced in La2/3Ca1/3MnO3 and possibly other manganites because of an interaction between the spin of the hopping polaron and its distortion of the lattice.

The observed phenomenon opens up interesting avenues. In particular, since straining a material can change the polaron concentration, the finding suggests a route to mechanical or electro-mechanical control of the MO effect that may find applications for sensing and optical communications.

Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Spain
Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Spain


Institut de Ciència de Materials de Barcelona
Campus de la UAB 08193 Bellaterra, SPAIN

Tel: +(34) 935 801 853
Fax: +(34) 935 805 729
Alejandro Santos 
Anna May-Masnou
Graphic Design
José Antonio Gómez

José Antonio Gómez 
Albert Moreno